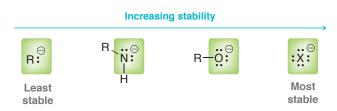


## **Alcohols and Phenols**

Klein, D. (2012). Alcohols and Phenols. En *Organic Chemistry* (pp. 571-574). USA: Wiley.



# 571


## 13.2 Acidity of Alcohols and Phenols

## Acidity of the Hydroxyl Functional Group

As we learned in Chapter 3, the acidity of a compound can be qualitatively evaluated by analyzing the stability of its conjugate base:

 $R - \overset{-}{\Omega} - H \xrightarrow{-H^+} R - \overset{\odot}{\Omega} \overset{\odot}{\vdots}$ To evaluate the acidity ...deprotonate... and assess the stability of this compound... of the conjugate base (an alkoxide ion)

The conjugate base of an alcohol is called an **alkoxide** ion, and it exhibits a negative charge on an oxygen atom. A negative charge on an oxygen atom is more stable than a negative charge on a carbon or nitrogen atom but less stable than a negative charge on a halogen, X (Figure 13.2).



Therefore, alcohols are more acidic than amines and alkanes but less acidic than hydrogen halides (Figure 13.3). The  $pK_a$  for most alcohols falls in the range of 15–18.

Increasing acidity

pK<sub>a</sub> between

15 and 18

:Х—н

pK<sub>a</sub> between

-10 and 3

#### FIGURE 13.3

FIGURE 13.2

anions.

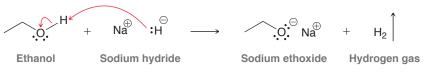
The relative acidity of alkanes, amines, alcohols, and hydrogen halides.

### Reagents for Deprotonating an Alcohol

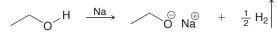
R—H

pK<sub>a</sub> between

45 and 50


There are two common ways to deprotonate an alcohol, forming an alkoxide ion.

NH<sub>2</sub>


pK<sub>a</sub> between

35 and 40

1. A strong base can be used to deprotonate the alcohol. A commonly used base is sodium hydride (NaH), because hydride (H<sup>-</sup>) deprotonates the alcohol to generate hydrogen gas, which bubbles out of solution:



**2.** Alternatively, it is often more practical to use Li, Na, or K. These metals react with the alcohol to liberate hydrogen gas, producing the alkoxide ion.





CONCEPTUAL CHECKPOINT

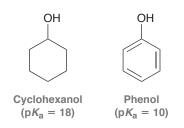




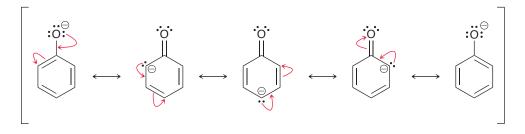
#### LOOKING BACK

The factors affecting the stability of a negative charge were first discussed in Section 3.4.

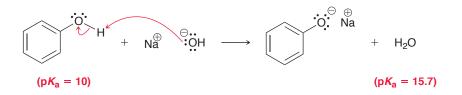
#### LOOKING BACK


Recall that a strong acid will have a low  $pK_a$  value. To review the relationship between  $pK_a$  and acidity, see SkillBuilder 3.2.

The relative stability of various

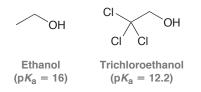

#### Factors Affecting the Acidity of Alcohols and Phenols

How can we predict which, of a number of alcohols, is more acidic? In this section, we will explore three factors for comparing the acidity of alcohols.


1. *Resonance*. One of the most significant factors affecting the acidity of alcohols is resonance. As a striking example, compare the  $pK_a$  values of cyclohexanol and phenol:



When phenol is deprotonated, the conjugate base is stabilized by resonance.



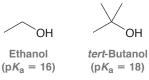

This resonance-stabilized anion is called a **phenolate**, or a **phenoxide** ion. Resonance stabilization of the phenoxide ion explains why phenol is eight orders of magnitude (100,000,000 times) more acidic than cyclohexanol. As a result, phenol does not need to be deprotonated with a very strong base like sodium hydride. Instead, it can be deprotonated by hydroxide.



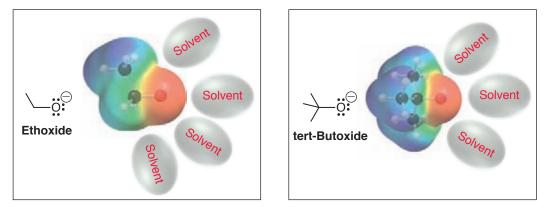
The acidity of phenols is one of the reasons that phenols are a special category of alcohols. Later in this chapter and again in Chapter 19 we will see other reasons why phenols belong to a class of their own.

2. *Induction*. Another factor in comparing the acidity of alcohols is induction. As an example, compare the  $pK_a$  values of ethanol and trichloroethanol.




Trichloroethanol is four orders of magnitude (10,000 times) more acidic than ethanol, because the conjugate base of trichloroethanol is stabilized by the electron-withdrawing effects of the nearby chlorine atoms.

**LOOKING BACK** For a review of inductive


effects, see Section 3.4.



**3.** *Solvation effects.* To explore the effect of alkyl branching, compare the acidity of ethanol and *tert*-butanol.



The  $pK_a$  values indicate that *tert*-butanol is less acidic than ethanol, by two orders of magnitude. This difference in acidity is best explained by a steric effect. The ethoxide ion is not sterically hindered and is therefore easily solvated (stabilized) by the solvent, while *tert*-butoxide is sterically hindered and is less easily solvated (Figure 13.4). The conjugate base of *tert*-butanol is less stabilized than the conjugate base of ethanol, rendering *tert*-butanol less acidic.



#### FIGURE 13.4

An ethoxide ion is stabilized by the solvent to a greater extent than *tert*-butoxide is stabilized by the solvent.

## **SKILLBUILDER**

LEARN the skill

#### **13.2** COMPARING THE ACIDITY OF ALCOHOLS

Identify which of the following compounds is expected to be more acidic.

OH 0



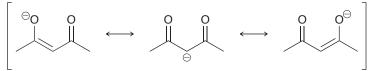
**Compound A** 

Compound B

#### SOLUTION

Begin by drawing the conjugate base of each, and then compare the stability of those conjugate bases.

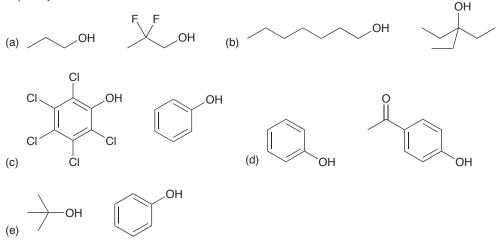





Conjugate base of compound A

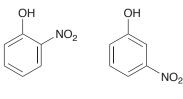
Conjugate base of compound B

The conjugate base of compound  ${\bf B}$  is not resonance stabilized, but the conjugate base of compound  ${\bf A}$  is resonance stabilized.


Conjugate base of compound A



The conjugate base of compound A will be more stable than the conjugate base of compound **B**. Therefore, compound **A** will be more acidic.


We expect compound **B** to have a  $pK_a$  somewhere in the range of 15–18 (the range expected for alcohols). The  $pK_a$  of compound **A** will be more difficult to predict. However, we can say with certainty that it will be lower (more acidic) than a regular alcohol. In other words, the  $pK_a$  value will be lower than 15.

RACTICE the skill 13.5 For each of the following pairs of alcohols, identify the one that is more acidic, and explain your choice:



APPLY the skill

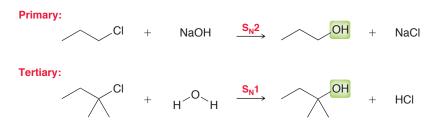
**13.6** Consider the structures of 2-nitrophenol and 3-nitrophenol. These compounds have very different  $pK_a$  values. Predict which one has the lower  $pK_a$ , and explain why. (Hint: In order to solve this problem, you must draw the structure of each nitro group.)



2-Nitrophenol

3-Nitrophenol

#### -----> need more **PRACTICE?** Try Problems 13.33, 13.34


## 13.3 Preparation of Alcohols via Substitution or Addition

#### **Substitution Reactions**

As we saw in Chapter 7, alcohols can be prepared by substitution reactions in which a leaving group is replaced by a hydroxyl group.



A primary substrate will require S<sub>N</sub>2 conditions (a strong nucleophile), while a tertiary substrate will require S<sub>N</sub>1 conditions (a weak nucleophile).

